
ASP-II for SUPPRESSOR Configuration • 1.1

Update: 02/17/98 2.1-1 SUPPRESSOR Version 5.4

2.1 CONFIGURATION

Platform configuration refers to the physical attributes that have some effect on the
movement, susceptibility, vulnerability, and system-based capabilities of the platform. In
Suppressor, these physical attributes are implemented as the user-defined physical and
logical relationships between the components and capabilities of a player. The user
implements the appropriate configuration of each simulation entity by creating a player to
represent the entity and then specifying the elements, systems, and expendables that will
implement the real-world platform’s attributes and capabilities. The user can structure the
player so that all of its components have the same location and, if movement is possible,
the same movement path. On the other hand, the player can also be defined with elements
at several locations, each with separate movement capability. Similarly, the user can
specify that elements at one location be treated as a single entity or as multiple entities with
respect to susceptibility and vulnerability. In addition, the user may define the systems
(movers, sensors, talkers, thinkers, weapons, or disruptors) and their capabilities and
expendables in each element.

2.1.1 Functional Element Design Requirements

The design requirements for implementing platform configuration attributes are:

a. Provide the user with sufficient flexibility in defining the player structure so that
its configuration produces the user-desired effects on the attributes and
capabilities of the simulated platform. This includes a requirement to allow each
player to have components at one or more locations, with one or more
separately susceptible and/or vulnerable components at each location, and zero
or more system capabilities for each separate component at each location. In
addition, each system may have zero or more expendables.

b. The player structure must be susceptible to detection and damage from other
players. Components under the location are the lowest level that can be sensed
and killed. A location with zero remaining compoennts is considered to be
killed. A player with zero remaining locations is considered to be dead. As
each component is killed the capabilities of its systems are lost.

c. Provide the following generic types of systems: movers, thinkers, talkers,
sensors, weapons, and disruptors. Suppressor will provide the capability for the
user to specify the capabilities of each generic system type.

2.1.2 Functional Element Design Approach

In Suppressor, characteristics of a player are defined in the Type Data Base (TDB) with a
PLAYER-STRUCTURE data item. This data item is basically a “table of contents” for the
player type. It defines the specific hierarchy of locations and equipment owned by that
player type. In the Scenario Data Base (SDB), the scenario developer populates the
scenario with instances of the player types defined in the TDB PLAYER-STRUCTUREs.

The components which are used to define a PLAYER-STRUCTURE are as follows:

PLAYER - The fundamental unit in a Suppressor scenario. Players interact with other
players using one or more of the generic functions: sensing, shooting, disrupting, talking,

Configuration • 1.1 ASP-II for SUPPRESSOR

SUPPRESSOR Version 5.4 2.1-2 Update: 02/17/98

moving, noticing, digesting, reacting. In the scenario laydown, players form command
chains and command chains form sides.

LOCATION - Each player contains one or more locations. The main attribute of a location
is a geographical position in the scenario space. The actual position, given in either
Cartesian or spherical coordinates, is specified in the SDB definition for an instance of the
player type. Typically, a location is a part of a player which performs a certain activity. For
example, a Surface-to-Air Missile (SAM) player might have a location devoted to a battery
commander, other locations possessing the radars, and other locations for the missile
launchers.

ELEMENT - Each location contains one or more elements. The element is the targetable
entity within a player. Signatures (e.g. radar cross section, optical cross section, and
infrared radiance) are defined on a per-element basis. Finally, elements are placeholders
for systems. For example, assume that an airplane has two elements at its only location.
One element might contain sensor systems and the other the weapon systems. Since an
incoming ordnance is directed at a single element, it would be possible for the weapon
element to be killed and the sensing element to remain living, thus degrading the overall
capability of the aircraft.

One final word on elements: Elements are considered to be collocated with their parent
locations for positional purposes. Therefore, in the preceding example, although the
elements might appear to the observer to be in different “places” on the airplane,
Suppressor would treat them as being at the same geographical position (that given to the
parent location) when performing range calculations, etc.

SYSTEM - Each element contains zero or more systems. There are eight system types
defined in Suppressor:

a. Communications Receiver
b. Communications Transmitter
c. Disruptor
d. Mover
e. Sensor Receiver
f. Sensor Transmitter
g. Thinker
h. Weapon

Suppressor provides sets of system type-dependent input items which are used by the
scenario developer. Implementation details of the system types are given in the functional
element descriptions below.

RESOURCE - Some system types can have associated resources, also known as
expendables. Mover systems can expend fuel. Weapon systems expend ordnance at the
target. Disruptor systems (those which are defined implicitly) can expend a generic CM-
EXPENDABLE which affects target tracking capability. Finally, thinker systems can
dynamically create a new player in response to a launch (i.e. scramble) message from a
commander.

ASP-II for SUPPRESSOR Configuration • 1.1

Update: 02/17/98 2.1-3 SUPPRESSOR Version 5.4

Unlike other models, Suppressor makes no assumptions as to how a particular player type
is structured. The scenario developer has total flexibility in determining the number of
locations a player has, as well as the configuration of the elements and systems it owns.
This flexibility requires that the user decide whether to model an entity as a single player
type with multiple locations or as multiple player types, each having fewer locations. One
of the main considerations in this decision is whether there is a need to model explicit
communications traffic between the locations. If there is such a need, then multiple player
types are necessary because messages are passed only between separate players, not
between locations within a single player.

2.1.3 Functional Element Software Design

The Suppressor player structures are created in module KNDSTR. There is a separate
player structure data block for each player type in the TDB. The player structure data block
is called the central directory (data block 1) and contains pointers to player location,
element, system, expendables, and tactics data as listed in Table 2.1-1. The central
directory is pointed to from the interaction key (data block 39) which can be accessed in
various ways including through the model treetop (data block 100).

The design for processing a PLAYER-STRUCTURE in a TDB is implemented in module
KNDSTR:

 *when player structure declaration (521100):
 *meld player structure into list;
 *when replacement mode:
 *when data had been defined:
 *recycle old structure;
 *end of test for data defined.
 *otherwise, data should be new:
 *set error flag if data present;
 *end of test for mode.
 *signal an error to user if necessary;
 *allocate dummy central directory;
 *when input name is not a player name, notify user;

TABLE 2.1-1. Data Pointers defined in Player Structure Data Block.

Modules Data Block (number)

LCMDL
LNKEY
LJAMR
LTACT
LWPNS
LFOES
LSUBS
LORDS
LCLST
LPAIL
LMNTL
LSENR
LCOMM
LFREN
- - - - -
- - - - -
- - - - -

ptr to command, control list (37)
ptr to interaction key (39)
ptr to jammer system list (92)
ptr to tactics, doctrine (96)
ptr to weapon system list (51)
ptr to sensor perception list (17)
ptr to subordinate perceptions list (10)
ptr to orders/assignments (18)
ptr to cluster list (2)
ptr to player acton item list (33)
ptr to mental processing (22)
ptr to sensor heading list (46)
ptr to communication status (69)
ptr to friendly player list (10)
reserved for HARM flyout
reserved for HARM flyout
reserved for HARM flyout

Configuration • 1.1 ASP-II for SUPPRESSOR

SUPPRESSOR Version 5.4 2.1-4 Update: 02/17/98

 *but, when structure data groups declared (522000):
 *meld data group header into list;
 *meld data group buffer into structure list;
 *when input is not a capability but should be, notify user;
 *when input is not a tactic but should be, notify user;
 *when input is not a susceptibility but should be, notify user;
 *but, when structure location (523000):
 *add structure to player list;
 *but, when structure element (524[0,1]00):
 *when element sentence (524000):
 *allocate element, add to list;
 *allocate dummy element, store pointer;
 *when input is not an element, notify user;
 *but, when criticality phrase (524100):
 *but, when structure for system (525000):
 *allocate system, add to list;
 *allocate dummy data blocks for system;
 *store pointer to character string for name;
 *when input name does not match system type, notify user;
 *but, when resource structure for systems (526x00):
 *allocate resource, add to list;
 *when traditional resource:
 *when resource is real-valued:
 *convert to internal units;
 *end of test for real value.
 *but, when external name:
 *store pointer to character string for name;
 *when input name is not an external name, notify user;
 *end of test for resource class.
 *but, when structure linkages for systems (527000):
 *allocate linkage, add to list;
 *loop, while system ID's to find:
 *search locations for system;
 *signal an error if not found;
 *end of loop for system ID's.
 *end of test for type of input.

2.1.4 Assumptions and Limitations

Player representations have no physical dimensions. They are modeled as point objects at
the locations specified.

2.1.5 Known Problems or Anomalies

None.

